Second Homework, due July 16th

1. Use the Trapezoidal Rule to approximate the following integrals:
I) $\int_{1}^{2} \frac{\ln (x) d x}{1+x}, n=10$
II) $\int_{1}^{2} e^{1 / x} d x, n=4$
III) $\int_{1}^{5} \frac{\cos (x)}{x} d x, n=8$
2. Determine wether each integral is convergent or divergent. Evaluate those which are convergent:
I) $\int_{1}^{\infty} \frac{1}{(3 x+1)^{2}} d x$
II) $\int_{-\infty}^{-1} \frac{1}{\sqrt{2-x}} d x$
III) $\int_{-\infty}^{\infty} x e^{-x^{2}} d x$
IV) $\int_{0}^{\infty} \frac{x \arctan (x)}{\left(1+x^{2}\right)^{2}} d x$
v) $\int_{0}^{3} \frac{1}{x \sqrt{x}} d x$
3. Determine wether the integral is convergent or divergent:
I) $\int_{1}^{\infty} \frac{\cos ^{2}(x)}{x^{3}} d x$
II) $\int_{1}^{\infty} \frac{d x}{x+e^{2 x}} d x$
4. Find the length of the curve $y=1+6 x^{3 / 2}$, when x varies from 0 to 1 .
5. Consider the curve given by the equation $y^{3}=x^{2}$
a) Sketch the curve.
b) Set up two integrals for the arc length from $(0,0)$ to $(1,1)$ (for one suppose that y is an implicit function of x and for the other one change the roles).
c) Say which the integrals above are improper and why. Finally evaluate both.
6. Consider the region $\mathfrak{R}=\left\{(x, y) \mid x \geq 1,0 \leq y \leq \frac{1}{x}\right\}$. If \mathfrak{R} is rotated about the x-axis, calculate the volume of the resulting solid and show that the surface are is infinite.
7. Find the coordinates of the centroid of the region bounded by $y=\sin (x), y=\cos (2 x)$ $x=\pi / 6$ and $x=5 \pi / 6$.
